Brittleness of Bayesian inference and new Selberg formulas
نویسنده
چکیده
The incorporation of priors [30] in the Optimal Uncertainty Quantification (OUQ) framework [31] reveals brittleness in Bayesian inference; a model may share an arbitrarily large number of finite-dimensional marginals with, or be arbitrarily close (in Prokhorov or total variation metrics) to, the data-generating distribution and still make the largest possible prediction error after conditioning on an arbitrarily large number of samples. The initial purpose of this paper is to unwrap this brittleness mechanism by providing (i) a quantitative version of the Brittleness Theorem of [30] and (ii) a detailed and comprehensive analysis of its application to the revealing example of estimating the mean of a random variable on the unit interval [0, 1] using priors that exactly capture the distribution of an arbitrarily large number of Hausdorff moments. However, in doing so, we discovered that the free parameter associated with Markov and Krĕın’s canonical representations of truncated Hausdorff moments generates reproducing kernel identities corresponding to reproducing kernel Hilbert spaces of polynomials. Furthermore, these reproducing identities lead to biorthogonal systems of Selberg integral formulas. This process of discovery appears to be generic: whereas Karlin and Shapley used Selberg’s integral formula to first compute the volume of the Hausdorff moment space (the polytope defined by the first n moments of a probability measure on the interval [0, 1]), we observe that the computation of that volume along with higher order moments of the uniform measure on the moment space, using different finite-dimensional representations of subsets of the infinite-dimensional set of probability measures on [0, 1] representing the first n moments, leads to families of equalities corresponding to classical and new Selberg identities.
منابع مشابه
On the Brittleness of Bayesian Inference
With the advent of high-performance computing, Bayesian methods are becoming increasingly popular tools for the quantification of uncertainty throughout science and industry. Since these methods can impact the making of sometimes critical decisions in increasingly complicated contexts, the sensitivity of their posterior conclusions with respect to the underlying models and prior beliefs is a pr...
متن کاملBrittleness of Bayesian inference under finite information in a continuous world
We derive, in the classical framework of Bayesian sensitivity analysis, optimal lower and upper bounds on posterior values obtained from Bayesian models that exactly capture an arbitrarily large number of finitedimensional marginals of the data-generating distribution and/or that are as close as desired to the data-generating distribution in the Prokhorov or total variation metrics; these bound...
متن کاملA New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction
In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...
متن کاملInference of Markov Chain: AReview on Model Comparison, Bayesian Estimation and Rate of Entropy
This article has no abstract.
متن کاملBayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کامل